Fourier Analysis 03-02
\nReview
\nThm. Let
$$
f \in R
$$
. Suppose f is differentiable
\nat x_0 . Then $\lim_{N \to \infty} S_N f(x_0) = f(x_0)$.
\nThm. (Dirichlet-Dini Criterion)
\nLet $f \in R$. Suppose \exists $U \in R$ such that
\n $(D_{\text{ini} conditiv}) \int_{0}^{T} \left| \frac{f(x_0+y) + f(x_0-y)}{2} - 2L \right| \frac{dy}{y} < \infty$.
\nThen $S_N f(x_0) \to U$ as $N \to +\infty$.
\nCor. If $f \in R$, f is Hölder cts at x_0 , then
\n $S_N f(x_0) \to f(x_0)$ as $N \to \infty$.

63.5 A cts function with diverging Fourier series.
\nLet us start from a special function.
\n
$$
f(x) = \begin{cases}\n i(\pi - x) & \text{if } 0 \le x \le \pi \\
i(-\pi - x) & \text{if } -\pi \le x \le 0\n\end{cases}
$$
\nIt is an odd function except at x=0.
\nIt has the following Fourier series
\n
$$
f(x) \sim \sum_{n \ne 0} \frac{1}{n} e^{inx} \quad \text{on } [-\pi, \pi]
$$
\nWrite for N \in \mathbb{N}.
\n
$$
f_N(x) = \sum_{n \ne 0} \frac{1}{n} e^{inx}
$$
\n
$$
\hat{f}_N(x) = \sum_{n = -N} \frac{1}{n} e^{inx}
$$
\n
$$
\hat{f}_N(x) = \sum_{n = -N} \frac{1}{n} e^{inx}
$$
\n
$$
f_N(x) = \sum_{n = -N} \frac{1}{n} e^{inx}
$$
\n
$$
f_N(x) \leq N \quad \text{for all } N \in \mathbb{N}, \ x \in [-\pi, \pi]
$$
\n
$$
(2) \quad |\hat{f}_N(0)| \geq log N.
$$

$$
Pf. We first prove (1). Consider the Abel mean of f,\n
$$
A_r(f)\propto = \sum_{n\neq 0} \frac{r^{(n)}}{n} e^{inx}
$$
\n
$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x-y) f(y) dy
$$
\nwhere $0 \le r < 1$.
\n
$$
|A_r(f) \propto x| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x-y) |f(y)| dy
$$
\n
$$
\le \sup_{z \in [0, n]} |f(z)| \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x-y) dy
$$
\n
$$
= ||f||_{\infty} < \infty
$$
$$

Notice that

\n
$$
\left| \int_{N}(x) - A_{r}(f)(x) \right| \leq \left| \int_{N}(x) - \sum_{\alpha \in [n] \leq N} \frac{r^{\lfloor n \rfloor}}{n} e^{inx} \right|
$$
\n
$$
+ \left| \sum_{\substack{|n| \geq N+1 \\ \alpha \leq [n] \leq N}} \frac{r^{\lfloor n \rfloor}}{n} e^{inx} \right|
$$
\n
$$
+ \left| \sum_{\substack{|n| \geq N+1 \\ \alpha \leq [n] \leq N}} \frac{r^{\lfloor n \rfloor}}{n} e^{inx} \right|
$$
\n
$$
\leq \sum_{\substack{|n| \leq N+1 \\ \alpha \leq [n] \leq N}} \frac{1 - r^{\lfloor n \rfloor}}{n} + \sum_{\substack{|n| \geq N+1 \\ \alpha \leq [n] \leq N}} \frac{r^{\lfloor n \rfloor}}{n}
$$

$$
= 2 \sum_{n=1}^{N} \frac{1-r^{n}}{n} + 2 \sum_{n \geq N+1} \frac{r^{n}}{n}
$$

\n(Note that $\frac{1-r^{n}}{n} = \frac{(1-r)(1+r+...+r^{n-1})}{n} < 1-r$
\n
$$
\sum_{n \geq N+1} \frac{r^{n}}{n} \leq \sum_{n \geq N+1} \frac{r^{n}}{N}
$$

\n
$$
= \frac{r^{N+1}}{N(1-r)}
$$

\nHenu $\left| \int_{N}(x) - Ar(f(x)) \right| \leq 2 \cdot N(1-r) + 2 \cdot \frac{r^{N+1}}{N(1-r)}$
\n
$$
\leq 2 \cdot N(1-r) + \frac{2}{N(1-r)}
$$

\nTaking $r = 1-\frac{1}{N}$, then $N(1-r)=1$ so
\n
$$
\left| \int_{N}(x) - Ar(f)(x) \right| \leq 4
$$

\nHenu $\left| \int_{N}(x) \right| \leq |Ar(f)(x)| + 4$
\n
$$
\leq ||f||_{\infty} + 4 \leq 2\pi + 4
$$

\nThus prove (1).
\nNow $\left| \int_{N}(0) \right| = 1 + \frac{1}{2} + ... + \frac{1}{N}$

$$
\frac{N}{R=1} \int_{R}^{R+1} \frac{dx}{\chi} dx
$$

$$
\frac{N}{R=1} \left(\log(R+1) - \log R \right) = \log(N+1) > \log N
$$

Now for each N
$$
\in
$$
 IN, define
\n
$$
P_{N}(x) = e^{i2Nx} + f_{N}(x) = \sum_{n=N}^{3N} \frac{1}{n-2N} e^{inx}
$$
\n
$$
P_{N}(x) = e^{i2Nx} + f_{N}(x) = \sum_{n=N}^{2N-1} \frac{1}{n-2N} e^{inx}
$$
\n
$$
Defin^{x} \alpha
$$
 sequence of integers $(N_{R})_{R=1}^{\infty}$ and
\n α sequence of possible numbers $(d_{R})_{R=1}^{\infty}$ such that
\n(i) $N_{R+1} > 3 N_{R}$ for all R
\n(ii) $\sum_{k=1}^{\infty} d_{k} < \infty$.
\n(iii) $d_{R} \log N_{R} \to \infty$ as $R \to \infty$.
\n $(e.g. \text{ we can take } N_{R} = 4^{k}, d_{R} = 3^{k}$)
\n
$$
Defin^{x}
$$
\n
$$
Q(x) = \sum_{k=1}^{\infty} d_{k} \cdot P_{N_{k}}(x)
$$
\n
$$
Sine |P_{N_{R}}(x)| = |f_{N_{R}}(x)| \le M
$$
\nSo the series converges absolutely and 9 is cts.

We would like to Show that $S_{N} \nmid (0) \rightarrow \nmid (0)$. Lemma²: Let $ne \nz$ Then $\widehat{q}(n) = \begin{cases} \frac{1}{n-2N_R} & \text{if } N_R \leq n \leq 3N_R \\ 0 & \text{otherwise} \end{cases}$